Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
This concise, readable, college-level text treats basic abstract algebra in remarkable depth and detail. An antidote to the usual surveys of structure, the book presents group theory, Galois theory, and classical ideal theory in a framework emphasizing proof of important theorems. Chapter I (Set Theory) covers the basics of sets. Chapter II (Group Theory) is a rigorous introduction to groups. It contains all the results needed for Galois theory as well as the Sylow theorems, the Jordan-Holder theorem, and a complete treatment of the simplicity of alternating groups. Chapter III (Field Theory) reviews linear algebra and introduces fields as a prelude to Galois theory. In addition there is a full discussion of the constructibility of regular polygons. Chapter IV (Galois Theory) gives a thorough treatment of this classical topic, including a detailed presentation of the solvability of equations in radicals that actually includes solutions of equations of degree 3 and 4 ― a feature omitted from all texts of the last 40 years. Chapter V (Ring Theory) contains basic information about rings and unique factorization to set the stage for classical ideal theory. Chapter VI (Classical Ideal Theory) ends with an elementary proof of the Fundamental Theorem of Algebraic Number Theory for the special case of Galois extensions of the rational field, a result which brings together all the major themes of the book. The writing is clear and careful throughout, and includes many historical notes. Mathematical proof is emphasized. The text comprises 198 articles ranging in length from a paragraph to a page or two, pitched at a level that encourages careful reading. Most articles are accompanied by exercises, varying in level from the simple to the difficult.