Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Die elementaren Operationen in der Arithmetik bestehen darin, daB man zwei ZaWen a und b in Ubereinstimmung mit einigen wohldefinierten Regeln verkniipft und so eine neue eindeutig bestimmte zaW c erMlt. Nehmen wir zum Beispiel als Verkniipfungsregel die Multiplikation, so schreiben wir c = ab. Wenn a und b gegeben sind, dann kann die zaW c in jedem Fall gefunden werden. Es ist bekannt, daB die Multiplikation von zwei oder mehreren Zahlen gewissen for- malen Regeln gehorcht, welche fur aile Produkte gelten, unabhiingig yom spezieilen nume- rischen Wert: (Ll) ab = ba; Kommutativgesetz (1. 2) (ab)c = a(bc) Assoziativgesetz (1. 3) la=al=a Die letzte Gleichung hat die Einftihrung eines spezieilen Elementes, des Einselementes, zur Folge. Das zweite Gesetz lautet ausftihrlicher: wenn wir ab = s und bc = t setzen, dann gilt immer sc = at. In der axiomatischen Behandlung der Arithmetik ist es iiblich, zuerst die Axiome oder Postulate etwa solche wie (1. 1), (1. 2) und (1. 3) festzulegen, sowie auch gewisse andere Ver- fahrensregeln beziiglich der Addition oder der Multiplikation einzuftihren, und man leitet davon dann die logischen Folgerungen abo Es ist dabei am Anfang unwesentlich, ob die Symbole a, b, . . . ZaWen, wie wir sie im iiblichen Sinne verstehen darstellen, oder etwa an- dere mathematische Gr6Ben, ja man verzichtet oft auf eine konkrete Interpretation. Es sind auch zaWreiche axiomatische Systeme im logischen Sinne m6glich, jedoch sind diese nicht alle in gleicher Weise interessant oder wichtig.