Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
In vielen Bereichen der theoretischen Physik spielt die Struktur "reelle Mannigfaltigkeit" eine hervorragende Rolle. Dies wird deut lich, wenn man an die Bedeutung der Tensorrechnung denkt, die eigentlich nur eine bequeme Rechentechnik fUr reelle differenzier bare Mannigfaltigkeiten ist. Es solI bier der Frage nachgegangen werden, welche Eigenschaften physikalischer Messungen die Ver wendung der genannten mathematischen Struktur verursachen. Wenn man fragt, was man bei einem physikalischen Versuch macht, kann man im allgemeinen feststellen: Es wird ein Gerat gebaut. Dieses Gerat hat Skalen, und eine Messung besteht in der Regel da rin, die Skalenwerte abzulesen. Urn ein konkretes Beispiel vor Au gen zu haben, denke man an eine Spannungsmessung. Wenn man versucht, einen kleinen Schritt tiber das reine Ablesen des Mef. \in struments hinauszugehen, erkennt man, da6 die Beschreibung die ser physikalischen Messung darin besteht, die abgelesene Zahl (Spannungsdifferenz) den beiden Punkten zuzuordnen, zwischen denen die Spannung gemessen wird. Man kann auch davon sprechen, da6 diese Zahl der Kurve (dem Drahtstiick) zugeordnet wird, die von den beiden Punkten berandet wird. Man kann auch Spannungs messungen an geschlossenen Drahtschleifen machen, indem die in duzierte Umlaufspannung gemessen wird. Dann lait sich diese physi kalische Messung betrachten als Zuordnung einer Zahl (induzierte Umlaufspannung) zu einer Flache oder dem Rand der Flache. Auch bei anderen Messungen besteht die Beschreibung der physikalischen Messungen in der Zuordnung abgelesener Skalengro en (Zahlen) zu einem Raumgebiet."