Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Graph theory is an important branch of contemporary combinatorial mathematics. By describing recent results in algebraic graph theory and demonstrating how linear algebra can be used to tackle graph-theoretical problems, the authors provide new techniques for specialists in graph theory. The book explains how the spectral theory of finite graphs can be strengthened by exploiting properties of the eigenspaces of adjacency matrices associated with a graph. The extension of spectral techniques proceeds at three levels: using eigenvectors associated with an arbitrary labeling of graph vertices, using geometrical invariants of eigenspaces such as graph angles and main angles, and introducing certain kinds of canonical eigenvectors by means of star partitions and star bases. Current research on these topics is part of a wider effort to forge closer links between algebra and combinatorics. Problems of graph reconstruction and identification are used to illustrate the importance of graph angles and star partitions in relation to graph structure. Specialists in graph theory will welcome this treatment of important new research.