Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
We gebruiken cookies om:
De website vlot te laten werken, de beveiliging te verbeteren en fraude te voorkomen
Inzicht te krijgen in het gebruik van de website, om zo de inhoud en functionaliteiten ervan te verbeteren
Je op externe platformen de meest relevante advertenties te kunnen tonen
Je cookievoorkeuren
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Wil je zeker zijn dat je cadeautjes op tijd onder de kerstboom liggen? Onze winkels ontvangen jou met open armen. Nu met extra openingsuren op zondag!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Wil je zeker zijn dat je cadeautjes op tijd onder de kerstboom liggen? Onze winkels ontvangen jou met open armen. Nu met extra openingsuren op zondag!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Ultra-short pulse laser processing of ultra-hard materials requires an accurate and agile experimental and analytical investigation to determine an efficient choice of parameters and settings to optimize ablation. Therefore, this work presents a quality-oriented experimental approach and an analytical approach for the modeling and validation of multi-pulse picosecond laser beam ablation on cemented tungsten carbide. This work starts with a review of literature and state-of-the-art theories of four relevant areas for this research: picosecond lasers, laser beam ablation process, cemented tungsten carbide (WC) and quality-oriented tools. Subsequently, a concept for an efficient material laser beam ablation with a picosecond laser was introduced. Furthermore, two approaches for the investigation are presented from an experimental and analytical perspective, respectively. The first approach introduced a methodology for the identification of influential parameters. It executes a quality-oriented methodology based on the SWOT analysis, cause-and-effect diagram and the variable search methodology. The conclusion of the methodology gave the interaction of pulse repetition rate and scanner speed in the form of pulse overlap and track overlap PO/TO as the most influential parameter in the maximization of the ablation rate. The second most influential factors resulted laser beam power and burst-mode. The second approach, description of the model, executes a theoretical analysis of the picosecond laser beam ablation of cemented WC by the application of the Beer-Lambert law and multi-pulse ablation modeling. The unavailable material properties were obtained by experimental investigations, like in the cases of the incubation factor and the reflectivity factor. Threshold fluence for cemented WC was determined by the application of the heat transfer theory and input power intensity was adapted to a Gaussian beam profile. At the end of the approach, power density visualizations of a picosecond laser pulse under the five available pulse repetition rates were modeled and validated. The findings from the adaptation of the Beer-Lambert law acted as basis for development of the multi-pulse laser ablation model for both single-pulse mode and burst-mode, respectively. Based on the definition of the number of pulses N irradiating the same area, the corresponding threshold fluence for N, the input fluence and incubation factor, ablation depth was modeled and experimentally validated. Finally, results and conclusions of both approaches were discussed and a framework for an efficient laser beam ablation was presented. Recommendations for further actions on research and industry were introduced at the end of the work.