Wil je zeker zijn dat je cadeautjes op tijd onder de kerstboom liggen? Onze winkels ontvangen jou met open armen. Nu met extra openingsuren op zondag!
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
Wil je zeker zijn dat je cadeautjes op tijd onder de kerstboom liggen? Onze winkels ontvangen jou met open armen. Nu met extra openingsuren op zondag!
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten

Domain Adaptation for Visual Recognition

Raghuraman Gopalan, Ruonan Li, Vishal M Patel, Rama Chellappa
€ 68,45
+ 136 punten
Levertermijn 1 à 4 weken
Eenvoudig bestellen
Veilig betalen
Gratis thuislevering vanaf € 30 (via bpost)
Gratis levering in je Standaard Boekhandel

Omschrijving

Domain adaptation is an active, emerging research area that attempts to address the changes in data distribution across training and testing datasets. With the availability of a multitude of image acquisition sensors, variations due to illumination and viewpoint among others, computer vision applications present a very natural test bed for evaluating domain adaptation methods. This monograph provides a comprehensive overview of domain adaptation solutions for visual recognition problems. By starting with the problem description and illustrations, it discusses three adaptation scenarios, namely, (i) unsupervised adaptation where the "source domain" training data is partially labeled and the "target domain" test data is unlabeled; (ii) semi-supervised adaptation where the target domain also has partial labels; and (iii) multi-domain heterogeneous adaptation which studies the previous two settings with the source and/or target having more than one domain, and accounts for cases where the features used to represent the data in each domain are different. For all of these scenarios, Domain Adaptation for Visual Recognition discusses the existing adaptation techniques in the literature. These techniques are motivated by the principles of max-margin discriminative learning, manifold learning, sparse coding, as well as low-rank representations, and have shown improved performance on a variety of applications such as object recognition, face recognition, activity analysis, concept classification, and person detection. Domain Adaptation for Visual Recognition concludes by analyzing the challenges posed by the realm of "big visual data" -- in terms of the generalization ability of adaptation algorithms to unconstrained data acquisition as well as issues related to their computational tractability -- and draws parallels with efforts from the vision community on image transformation models and invariant descriptors so as to facilitate improved understanding of vision problems under uncertainty.

Specificaties

Betrokkenen

Auteur(s):
Uitgeverij:

Inhoud

Aantal bladzijden:
110
Taal:
Engels
Reeks:
Reeksnummer:
nr. 25

Eigenschappen

Productcode (EAN):
9781680830309
Verschijningsdatum:
11/03/2015
Uitvoering:
Paperback
Formaat:
Trade paperback (VS)
Afmetingen:
156 mm x 234 mm
Gewicht:
163 g
Standaard Boekhandel

Alleen bij Standaard Boekhandel

+ 136 punten op je klantenkaart van Standaard Boekhandel
E-BOOK ACTIE

Tot meer dan 50% korting

op een selectie e-books
E-BOOK ACTIE
E-book kortingen
Standaard Boekhandel

Beoordelingen

We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.