Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
In this thesis, we contribute to new directions within Reinforcement Learning, which are important for many practical applications such as the control of biomechanical models. We deepen the mathematical foundations of Reinforcement Learning by deriving theoretical results inspired by classical optimal control theory. In our derivations, Deep Reinforcement Learning serves as our starting point. Based on its working principle, we derive a new type of Reinforcement Learning framework by replacing the neural network by a suitable ordinary differential equation. Coming up with profound mathematical results within this differential equation based framework turns out to be a challenging research task, which we address in this thesis. Especially the derivation of optimality conditions takes a central role in our investigation. We establish new optimality conditions tailored to our specific situation and analyze a resulting gradient based approach. Finally, we illustrate the power, working principle and versatility of this approach by performing control tasks in the context of a navigation in the two dimensional plane, robot motions, and actuations of a human arm model.