Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
We gebruiken cookies om:
De website vlot te laten werken, de beveiliging te verbeteren en fraude te voorkomen
Inzicht te krijgen in het gebruik van de website, om zo de inhoud en functionaliteiten ervan te verbeteren
Je op externe platformen de meest relevante advertenties te kunnen tonen
Je cookievoorkeuren
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Wil je zeker zijn dat je cadeautjes op tijd onder de kerstboom liggen? Onze winkels ontvangen jou met open armen. Nu met extra openingsuren op zondag!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Wil je zeker zijn dat je cadeautjes op tijd onder de kerstboom liggen? Onze winkels ontvangen jou met open armen. Nu met extra openingsuren op zondag!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
L'exploration de données est un processus qui consiste à extraire des informations cachées et utiles des données. La détection des valeurs aberrantes est une partie fondamentale de l'exploration de données et a récemment fait l'objet d'une attention considérable de la part de la communauté des chercheurs. Une valeur aberrante est un objet de données qui s'écarte des autres observations. La détection des valeurs aberrantes a des applications importantes dans le nettoyage des données ainsi que dans l'extraction de points anormaux pour la détection de la fraude, l'analyse du marché boursier, la détection des intrusions, le marketing, les capteurs de réseau. La plupart des efforts de recherche existants se concentrent sur les ensembles de données numériques qui ne sont pas directement applicables aux ensembles de données catégorielles où l'ordre des données et le calcul des distances entre les points de données ont peu de sens. En outre, un certain nombre de méthodes actuelles de détection des valeurs aberrantes nécessitent un temps quadratique par rapport à la taille de l'ensemble de données et nécessitent généralement des analyses multiples des données; ces caractéristiques ne sont pas souhaitables lorsque les ensembles de données sont volumineux. Cette thèse se concentre et évalue, expérimentalement, une approche de détection des aberrations qui est orientée vers les ensembles catégoriels. En outre, il s'agit d'un algorithme de détection de valeurs aberrantes simple, évolutif et efficace qui a l'avantage de découvrir les valeurs aberrantes dans des ensembles de données catégoriques ou numériques en per