Design Theory, Second Edition presents some of the most important techniques used for constructing combinatorial designs. It augments the descriptions of the constructions with many figures to help students understand and enjoy this branch of mathematics.
This edition now offers a thorough development of the embedding of Latin squares and combinatorial designs. It also presents some pure mathematical ideas, including connections between universal algebra and graph designs.
The authors focus on several basic designs, including Steiner triple systems, Latin squares, and finite projective and affine planes. They produce these designs using flexible constructions and then add interesting properties that may be required, such as resolvability, embeddings, and orthogonality. The authors also construct more complicated structures, such as Steiner quadruple systems.
By providing both classical and state-of-the-art construction techniques, this book enables students to produce many other types of designs.
We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.