Motiviert durch aktuelle Entwicklungen in der abhängigen Typentheorie und bei Unendlichkategorien präsentiert dieses Buch die Ideengeschichte der Begriffe Wahrheit, Beweis, Gleichheit und Äquivalenz. Neben ausgewählten Ideen von Platon, Aristoteles, Leibniz, Kant, Frege und anderen werden Resultate von Gödel und Tarski über Unvollständigkeit, Unentscheidbarkeit und Wahrheit in deduktiven Systemen und ihren semantischen Modellen vorgestellt. Der Hauptgegenstand dieses Textes ist die abhängige Typentheorie und neuere Entwicklungen in der Homotopy Type Theory. Diese Theorien beinhalten Identitätstypen, die neue Möglichkeiten für Gleichheit, Symmetrie, Äquivalenz und Isomorphie auf konzeptuelle Weise eröffnen. Die Interaktion von Typentheorie und Unendlichkategorien ist ein neues Paradigma für eine strukturelle Sichtweise auf die Mathematik. Sie fördert auch den neuen Trend zur Formalisierung von Mathematik in Form von Beweisassistenten.
We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.