Onze Vivlio e-readers ondervinden momenteel synchronisatieproblemen. We doen er alles aan om dit zo snel mogelijk op te lossen. Onze excuses voor het ongemak!
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
Onze Vivlio e-readers ondervinden momenteel synchronisatieproblemen. We doen er alles aan om dit zo snel mogelijk op te lossen. Onze excuses voor het ongemak!
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten

Deep Learning for Computer Architects

Brandon Reagen, Robert Adolf, Paul Whatmough
€ 106,95
+ 213 punten
Uitvoering
Levertermijn 1 à 4 weken
Eenvoudig bestellen
Veilig betalen
Gratis thuislevering vanaf € 30 (via bpost)
Gratis levering in je Standaard Boekhandel

Omschrijving

Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware.

This text serves as a primer for computer architects in a new and rapidly evolving field. We review how machine learning has evolved since its inception in the 1960s and track the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Next we review representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloads themselves, we also detail the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs.

The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, we present a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context.

Specificaties

Betrokkenen

Auteur(s):
Uitgeverij:

Inhoud

Aantal bladzijden:
123
Taal:
Engels
Reeks:

Eigenschappen

Productcode (EAN):
9781681732190
Verschijningsdatum:
22/08/2017
Uitvoering:
Hardcover
Formaat:
Genaaid
Afmetingen:
190 mm x 235 mm
Gewicht:
430 g
Standaard Boekhandel

Alleen bij Standaard Boekhandel

+ 213 punten op je klantenkaart van Standaard Boekhandel
E-BOOK ACTIE

Tot meer dan 50% korting

op een selectie e-books
E-BOOK ACTIE
E-book kortingen
Standaard Boekhandel

Beoordelingen

We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.