Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
The decomposition of the space L2 (G(Q)\G(/A)), where G is a reductive group defined over (Q and /A is the ring of adeles of (Q, is a deep problem at the intersection of number and group theory. Langlands reduced this decomposition to that of the (smaller) spaces of cuspidal automorphic forms for certain subgroups of G. The present book describes this proof in detail. The starting point is the theory of automorphic forms, which can also serve as a first step towards understanding the Arthur-Selberg trace formula. To make the book reasonably self-contained, the authors have also provided essential background to subjects such as automorphic forms, Eisenstein series, Eisenstein pseudo-series (or wave-packets) and their properties. It is thus also an introduction, suitable for graduate students, to the theory of automorphic forms, written using contemporary terminology. It will be welcomed by number theorists, representation theorists, and all whose work involves the Langlands program.