Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending aan op alles gedurende de hele maand januari.
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België
  • Ruim aanbod met 7 miljoen producten
Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending aan op alles gedurende de hele maand januari.
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België
  • Ruim aanbod met 7 miljoen producten

Data Privacy in der Praxis

Datenschutz und Sicherheit in Daten- und KI-Projekten

Katharine Jarmul
Paperback | Duits | Animals
€ 49,45
Uitvoering
Levering 1 à 4 weken
Eenvoudig bestellen
Veilig betalen
In januari gratis thuislevering in België (via bpost)
Gratis levering in je Standaard Boekhandel

Omschrijving

  • Das Buch zeigt, wie Sie dafür sorgen, dass die Daten in Ihrem Projekt privat, anonymisiert und sicher sind
  • Auf den europäischen Markt zugeschnitten, behandelt die DSGVO eingehend
  • Umfasst auch Themen wie ChatGPT und Deep Fakes
  • Katharine Jarmul ist eine renommierte Privacy-Spezialistin. Sie arbeitet für Thoughtworks und ist Mitgründerin der PyLadies

Die Anforderungen an den Datenschutz sind in Daten- und KI-Projekten heute so hoch wie nie. Die Integration von Privacy in Datensysteme ist jedoch nach wie vor komplex. Dieser Leitfaden vermittelt Data Scientists und Data Engineers ein grundlegendes Verständnis von modernen Datenschutzbausteinen wie Differential Privacy, Federated Learning und homomorpher Verschlüsselung. Privacy-Spezialistin Katharine Jarmul zeigt Best Practices und gibt praxiserprobte Ratschläge für den Einsatz bahnbrechender Technologien zur Verbesserung des Datenschutzes in Produktivsystemen.

Das Buch beantwortet diese wichtigen Fragen:

  • Wie wirken sich Datenschutzbestimmungen wie die DSGVO oder der California Consumer Privacy Act (CCPA) auf meine Datenworkflows und Data-Science-Anwendungen aus?
  • Was ist unter »anonymisierten Daten« zu verstehen und wie lassen sich Daten anonymisieren?
  • Wie funktionieren Federated Learning und Federated Analysis?
  • Homomorphe Verschlüsselung klingt großartig - doch ist sie auch anwendungsreif?
  • Wie kann ich datenschutzwahrende Technologien und Verfahren miteinander vergleichen, um die für mich beste Wahl zu treffen? Welche Open-Source-Bibliotheken stehen hierfür zur Verfügung?
  • Wie stelle ich sicher, dass meine Data-Science-Projekte von vornherein geschützt und sicher sind?
  • Wie kann ich mit den für Governance und Informationssicherheit verantwortlichen Teams zusammenarbeiten, um interne Richtlinien in geeigneter Weise umzusetzen?

Specificaties

Betrokkenen

Auteur(s):
Uitgeverij:

Inhoud

Aantal bladzijden:
414
Taal:
Duits
Reeks:

Eigenschappen

Productcode (EAN):
9783960092339
Verschijningsdatum:
24/06/2024
Uitvoering:
Paperback
Afmetingen:
166 mm x 25 mm
Gewicht:
772 g
Standaard Boekhandel

Alleen bij Standaard Boekhandel

SOLDEN

30% korting

op een mooie selectie boeken en papierwaren
SOLDEN
Solden: 30% korting op boeken en papierwaren
E-BOOK ACTIE

Tot meer dan 50% korting

op een selectie e-books
E-BOOK ACTIE
E-book kortingen
Standaard Boekhandel

Beoordelingen

We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.