Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Introduction to power market data and their characteristics.- Modeling load forecasting uncertainty using deep learning models.- Data-driven load data cleaning and its impacts on forecasting performance.- Generalized cost-oriented load forecasting in economic dispatch.- A monthly electricity consumption forecasting method.- Data-driven pattern extraction for analyzing market bidding behaviors.- Stochastic optimal offering based on probabilistic forecast on aggregated supply curves.- Power market simulation framework based on learning from individual offering strategy.- Deep inverse reinforcement learning for reward function identification in bidding models.- The subspace characteristics and congestion identification of LMP data.- Online transmission topology identification in LMP-based markets.- Day-ahead componential electricity price forecasting.- Quantifying the impact of price forecasting error on market bidding.- Virtual bidding and FTR speculation based on probabilistic LMP forecasting.- Abnormal detection of LMP scenario and data with deep neural networks.