Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Majority of the current numerical simulation methods for time-dependent flows are limited to second order accuracy in time discretization. Moreover, usual simulation methods rely on explicit time discretization methods for which numerical stability of solution is generally guaranteed only with very small time step sizes. Major commercial CFD software programs provide options for implicit time advancing, but the accuracy is limited to second order in time. In this book a stable simulation method is proposed that can be used to achieve arbitrarily high order of accuracy in time advancement in simulation of time-dependent flows and heat transfer. The strategy is to combine the state-of-the-art mathematical tools with proven flow simulation algorithms to develop simulation techniques with higher-order accuracy. A special class of implicit Runge-Kutta methods is used in conjunction with SIMPLE algorithm. The proposed method is called SIMPLE DIRK method. This book will be helpful to university students and researchers who are involved in research and code development for simulation of time-dependent flows and heat transfer.