The classic presentation of the theory of computable functions in the context of the foundations of mathematics. Part I motivates the study of computability with discussions and readings about the crisis in the foundations of mathematics in the early 20th century, while presenting the basic ideas of whole number, function, proof, and real number. Part II starts with readings from Turing and Post leading to the formal theory of recursive functions. Part III presents sufficient formal logic to give a full development of Gödel's incompleteness theorems. Part IV considers the significance of the technical work with a discussion of Church's Thesis and readings on the foundations of mathematics. This new edition contains the timeline "Computability and Undecidability" as well as the essay "On mathematics".
We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.