Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
This monograph provides a self-contained and comprehensive account of the most significant existence results obtained over the past two decades referring to some remarkable classes of ill-posed problems governed by non-accretive operators. All the results are derived from several compactness arguments, due mainly to the author, and are suitably illustrated by examples arising from various concrete problems - for example, nonlinear diffusion, heat conduction in materials with memory, fluid dynamics, and vibrations of a string with memory. Reference is made to optimal control theory in order to emphasize the degree of applicability of abstract compactness methods. Special attention is paid to multivalued perturbations of m-accretive operators; this case is analyzed under appropriate assumptions in order to allow the use of the general results in the study of some specific problems of great practical interest: reaction-diffusion and closed loop systems. Some biographical comments and open problems are also included. This new edition contains a number of improvements, corrections and insertions which both simplify and update the material. The book will be of interest to graduate students and specialists working in abstract evolution equations, partial differential equations, reaction-diffusion systems and ill-posed problems. A knowledge of topology, functional analysis and ordinary differential equations to undergraduate level is assumed.