Chaire combinatoire
En combinatoire, ce ne sont pas tant les problèmes et les résultats qui ont un intérêt, mais plutôt les méthodes et les techniques qu'il faut développer pour les résoudre. Certains problèmes sont simples à énoncer alors que les solutions sont complexes ; ou bien nous utilisons des hypothèses faibles, mais les conséquences peuvent être d'une richesse surprenante ; certaines démonstrations sont courtes et faciles à comprendre, mais ingénieuses et difficiles à découvrir. Bien que les objets étudiés, comme les graphes ou les familles de sous-ensembles d'un ensemble fini, présentent un intérêt purement mathématique, les résultats s'appliquent à de nombreux autres domaines, tels que l'informatique, l'économie ou l'épidémiologie.
We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.