Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Clustered longitudinal data are often collected as repeated measures on subjects arising in clusters. Examples include periodontal disease study, where the measurements related to the disease status of each tooth are collected over time for each patient which is considered as a cluster. For such applications, the number of teeth for each patient may be related to the overall oral health of the individual and hence may influence the distribution of the outcome measure of interest leading to an informative cluster size. Under such situations, three competing marginal linear models are proposed for clustered longitudinal data, namely, generalized estimating equations (GEE), within- cluster resampling (WCR), and cluster-weighted generalized estimating equations (CWGEE). Using simulations, theoretical calculations and real data analysis on periodontal disease, when the cluster size is informative, CWGEE appears to be the recommended choice for marginal parametric inference with clustered longitudinal data that achieves similar parameter estimates and test statistics as WCR while avoiding Monte Carlo computation, while GEE gets biased estimators