Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
For a century, one of the most famous problems in mathematics was to prove the four-color theorem.In 1912, George Birkhoff proposed a way to tackling the four-color conjecture by introduce a function P(M, t), defined for all positive integer t, to be the number of proper t-colorings of a map M. This function P(M, t)in fact a polynomial in t is called chromatic polynomial of M. If one could prove that P(M, 4)>0 for all maps M, then this would give a positive answer to the four-color problem. In this book, we have proved the following results: (1)Recursive form of the chromatic polynomials of hypertree, Centipede hypergraph, elementary cycle, Sunlet hypergraph, Pan hypergraph, Duth Windmill hypergraph, Multibridge hypergraph, Generalized Hyper-Fan, Hyper-Fan, Generalized Hyper-Ladder and Hyper-Ladder and also prove that these hypergraphs are not chromatically uniquein the class of sperenian hypergraphs. (2)Tree form and Null graph representation of the chromatic polynomials of elementary cycle, uni-cyclic hypergraph and sunflower hypergrpah. (3)Generalization of a result proved by Read for graphs to hypergraphs and prove that these kinds of hypergraphs are not chromatically unique.