Wil je zeker zijn dat je cadeautjes op tijd onder de kerstboom liggen? Onze winkels ontvangen jou met open armen. Nu met extra openingsuren op zondag!
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
Wil je zeker zijn dat je cadeautjes op tijd onder de kerstboom liggen? Onze winkels ontvangen jou met open armen. Nu met extra openingsuren op zondag!
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten

Build a Weather Station with Elixir and Nerves

Visualize Your Sensor Data with Phoenix and Grafana

Alexander Koutmos, Bruce Tate, Frank Hunleth
Paperback | Engels
€ 38,95
+ 77 punten
Levering 2 à 3 weken
Eenvoudig bestellen
Veilig betalen
Gratis thuislevering vanaf € 30 (via bpost)
Gratis levering in je Standaard Boekhandel

Omschrijving

The Elixir programming language has become a go-to tool for creating reliable, fault-tolerant, and robust server-side applications. Thanks to Nerves, those same exact benefits can be realized in embedded applications. This book will teach you how to structure, build, and deploy production grade Nerves applications to network-enabled devices. The weather station sensor hub project that you will be embarking upon will show you how to create a full stack IoT solution in record time. You will build everything from the embedded Nerves device to the Phoenix backend and even the Grafana time-series data visualizations.

Elixir as a programming language has found its way into many different software domains, largely in part to the rock-solid foundation of the Erlang virtual machine. Thanks to the Nerves framework, Elixir has also found success in the world of embedded systems and IoT. Having access to all of the Elixir and OTP constructs such as concurrency, supervision, and immutability makes for a powerful IoT recipe. Find out how to create fault-tolerant, reliable, and robust embedded applications using the Nerves framework.

Build and deploy a production-grade weather station sensor hub using Elixir and Nerves, all while leveraging the best practices established by the Nerves community for structuring and organizing Nerves applications. Capture all of your weather station sensor data using Phoenix and Ecto in a lightweight server-side application. Efficiently store and retrieve the time-series weather data collected by your device using TimescaleDB (the Postgres extension for time-series data). Finally, complete the full stack IoT solution by using Grafana to visualize all of your time-series weather station data. Discover how to create software solutions where the underlying technologies and techniques are applicable to all layers of the project.

Take your project from idea to production ready in record time with Elixir and Nerves.

What You Need:

To complete the Nerves weather station project in this book, you will need the following:

  • A Linux, MacOS, or Windows computer to build and deploy Nerves firmware images
  • A Raspberry Pi Zero W or any other Nerves supported target (https: //hexdocs.pm/nerves/targets.html#supported-targets-and-systems)
  • A VEML6030 light sensor
  • An BME680 environmental sensor
  • An SGP30 air quality sensor
  • Qwiic connect cables for weather sensors
  • Specificaties

    Betrokkenen

    Auteur(s):
    Uitgeverij:

    Inhoud

    Aantal bladzijden:
    92
    Taal:
    Engels

    Eigenschappen

    Productcode (EAN):
    9781680509021
    Verschijningsdatum:
    15/02/2022
    Uitvoering:
    Paperback
    Formaat:
    Trade paperback (VS)
    Afmetingen:
    190 mm x 235 mm
    Gewicht:
    172 g
    Standaard Boekhandel

    Alleen bij Standaard Boekhandel

    + 77 punten op je klantenkaart van Standaard Boekhandel
    E-BOOK ACTIE

    Tot meer dan 50% korting

    op een selectie e-books
    E-BOOK ACTIE
    E-book kortingen
    Standaard Boekhandel

    Beoordelingen

    We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.