Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
We gebruiken cookies om:
De website vlot te laten werken, de beveiliging te verbeteren en fraude te voorkomen
Inzicht te krijgen in het gebruik van de website, om zo de inhoud en functionaliteiten ervan te verbeteren
Je op externe platformen de meest relevante advertenties te kunnen tonen
Je cookievoorkeuren
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
The knowledge of the system, the data stored, the workload and the inter-dependency between them is a major requirement for tuning a Database Management System (DBMS). Due to complexity of the DBMSs and the diversity of their workload, there is a need for automatic tuning of DBMS. Self-managing (or autonomic) databases are intended to reduce the total cost of ownership by automatically adapting to evolving workloads and environments. To reach this goal, commercial DBMSs have recently been equipped with self-management functions, which support the database administrator (DBA) in identifying the appropriate indexes or in sizing the memory areas. However, existing techniques suffer from several problems: First, they are often implemented as off-line tools that have to be explicitly triggered by a DBA. Second, they strictly focus on automating one particular administration task, without considering possible side-effects on other components. This book defines the automated manner to make the system self tune in variable workload.