The four papers collected in this book discuss advanced results in analytic number theory, including recent achievements of sieve theory leading to asymptotic formulae for the number of primes represented by suitable polynomials; counting integer solutions to Diophantine equations, using results from algebraic geometry and the geometry of numbers; the theory of Siegel's zeros and of exceptional characters of L-functions; and an up-to-date survey of the axiomatic theory of L-functions introduced by Selberg.
We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.