Cet ouvrage regroupe les cours d’algèbre et arithmétique de quatre unités de valeur de Licence (L3) et Master (M1) de Mathématique, de l’Université de Franche-Comté, donnés pendant plusieurs années par les auteurs, pour un enseignement par correspondance.
Ces cours étant censés permettre à l’étudiant de travailler de façon autonome, les auteurs ont rédigé des preuves très complètes et commentées, fourni beaucoup d’exemples et exercices (avec solution ou très détaillés).
Le programme est tout à fait classique en ce qui concerne les parties Groupes, Anneaux, Corps (théorie de Galois), et s’achève par la partie Modules arithmétiques consacrée à l’algèbre linéaire sur un anneau et à des thèmes de théorie des nombres (théorème de Kronecker, approximation diophantienne, entiers algébriques, etc.).
Les auteurs ont cherché à maintenir un cap logique et ensembliste très rigoureux, ce qui est tout à fait en phase avec les aspects algorithmiques donnés de façon assez systématique dans ce livre.
Cet ouvrage devrait donc accompagner l’étudiant, de la Licence au Master, puis à la préparation au CAPES et à l’Agrégation. Des enseignants pourront y trouver des sources de réflexion. Des autodidactes et amateurs peuvent y prétendre en raison de la progressivité du parcours.
Des commentaires biographiques sur les mathématiciens cités sont donnés ainsi qu’une bibliographie assez étendue.
We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.