Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
The problem of solving large, sparse, linear systems of algebraic equations is vital in scientific computing, even for applications originating from quite different fields. A Survey of Preconditioned Iterative Methods presents an up to date overview of iterative methods for numerical solution of such systems. Typically, the methods considered are well suited for the kind of systems arising from the discretization of partial differential equations. The focus of this presentation is on the family of Krylov subspace solvers, of which the Conjugate Gradient algorithm is a typical example. In addition to an introduction to the basic principles of such methods, a large number of specific algorithms for symmetric and nonsymmetric problems are discussed. When solving linear systems by iteration, a preconditioner is usually introduced in order to speed up convergence. In many cases, the selection of a proper preconditioner is crucial to the resulting computational performance. For this reason, this book pays special attention to different preconditioning strategies. Although aimed at a wide audience, the presentation assumes that the reader has basic knowledge of linear algebra, and to some extent, of partial differential equations. The comprehensive bibliography in this survey is provides an entry point to the enormous amount of published research in the field of iterative methods.