Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
We gebruiken cookies om:
De website vlot te laten werken, de beveiliging te verbeteren en fraude te voorkomen
Inzicht te krijgen in het gebruik van de website, om zo de inhoud en functionaliteiten ervan te verbeteren
Je op externe platformen de meest relevante advertenties te kunnen tonen
Je cookievoorkeuren
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
In this book, a new Generalized Discontinuous Galerkin (GDG) method for Schrodinger equations with nonsmooth solutions is proposed. The numerical method is based on a reformulation of Schrodinger equations, using split distributional variables and their related integration by parts formulae to account for solution jumps across material interfaces. GDG can handle time dependent and general nonlinear jump conditions. And numerical results validate the high order accuracy and the flexibility of the method for various types of interface conditions. As one of GDG's application, a new vectorial generalized discontinuous Galerkin beam propagation method (GDG-BPM) for wave propagations in inhomogeneous optical waveguides is also included. The resulting GDG-BPM takes on four formulations for either electric or magnetic field. GDG-BPM's unique feature of handling interface jump conditions and its flexibility in modeling wave propagations in inhomogeneous optical fibers is shown by various numerical results.